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Approximate relations have been derived for the initial transient diffusion through laminated 
membranes of the AB or ABC type for boundary conditions corresponding to the time-lag 
method. Jt is shown that in the initial stages of diffusion the behaviour of laminated membranes 
can be approximated by hypothetical simple membranes of the same thickness, the diffusion 
and partition coefficient of which can be determined from the corresponding characteristics 
(and thicknesses) of the constituent layers. 

Due to the importance of laminated structures as barriers preventing the undesired penetration 
of permeants in a number of applications (packaging technique, food technology, anticorrosion 
protection, health safety in dealing with harmful substances, and the like), considerable attention 
has been devoted in the literature to the phenomenology of diffusion through laminated mem­
branes. Obviously, in the stationary state the diffusion flow is the same in all constituent layers 
of the lamina, and simple relations hold t - 4 between the permeation coefficient of the laminated 
structure and the respective diffusion (D j ) and solubility (Sj) parameters of the constituent layers. 
Assuming that for none of the layers the characteristics D j , Sj are dependent on the concentra­
tion of the diffusant, relations have also been derived for the calculation of a quantity called time­
lag for a number of structures important for practice: AB and ABA (Barrie and coworkers s ), 
ABABAB ... (Ash and coworkers6 ), ABC . .. (Ash and coworkers2

). These data are sufficient to 
characterize the stationary diffusion through the laminated layer in an arrangement corresponding 
to the time-lag method 3 ,4. On the other hand , comparatively little is known for laminated struc­
tures about the initial transient diffusion in the time-lag method or for other boundary conditions. 
For a lamina of the AB type an exact solution of transient diffusion has been derived? in the form 
of an infinite series containing roots of rather complicated transcendental equations, which there­
fore is not very convenient for practical calculations. For a symmetrical membrane of the ABA 
type the solution of transient diffusion has been derived8 for the special case of a linear concen­
tration gradient in both outer layers. A complete solution of transient diffusion in more complicated 
laminated structures meets with considerable mathematical difficulties and has not been offered 
yet. For some applications, however, the knowledge of the initial stages of permeation is of deci­
sive importance, e.g. in the design of barriers against penetration of substances dangerous even 
in minute concentrations. On the contrary, in these cases the boundary conditions corresponding 
to the time-lag method are very well satisfied, and also the concentration dependence of the 
diffusion and partition coefficients can be safely neglected in approximate calculations. 
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890 Kubin: 

In this study we derive approximate solution s to the problem of transient diffusion 
through laminated membranes of the AB or ABC type, valid for smaJl times (before 
the stationary sta te is reached). ] t is shown that in thi s stage the composite membrane 
may be approximated by a hypothetical si ngle layer, the characteristics of which 
(the diffu sion and partition coefficients) may be calculated from the respecti ve quanti­
ties (and thicknesses) of the constituent layers forming the real laminated membrane. 

THEOI~ETICAL 

Let us consider only the arrangement used in the time-lag method , where the mem­
brane (initiaJly free of permeant) is exposed a t time I = 0 on the one side to a medium 
in which the concentration is mainta ined a t a constant level , while on the other side 
of the barrier the concentration remains virtually zero ; all diffusion and partition 
coefficients are regarded as constant, concentration-independent quantities . 

Membrane AB 

In this case the boundary problem to be solved is described by equations 

with the boundary conditions 

1=0 

I> 0 

O~x~a+b 

x = 0 

x = a 

x = a 

x = a + b 

Ca = Cb = 0, 

Ca = 0, 

D aCa = aCb Db 
a ax ax ' 

(1) 

(2) 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

where D is the diffusion coefficient, C is concentration, x is the spatial coordinate 
perpendicular to the membrane surface, t is time and S is the partition coefficient. 
The indices refer to the two layers of the laminated membrane, a and b respectively 
are their thicknesses; Co is the (constant) concentration on one side of the membrane. 
Condition (3c) describes the continuity offtow at the boundary of both layers, while 
(3d) expresses the assumption that the local concentrations at the boundary satisfy 
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the condition of thermodynamic equilibrium. The sought quantity is the o ve ra ll 
amount of the permea nt , qab(t) , which has passed through a unit area of the membrane 
at x = 0 from the beginning of the experiment , 

() = f l D \llCa(X, IJ\ d ' q"b I a ~ I . 
o ox x = () 

(4) 

This boundary-value problem is so lved by the La place-Carson (L.-c.) integral 
transformation. Let us introduce L.-c. transforms of concentra tion s Ca , C b by the 
equations 

2'{Ca(x, In = six, p) = p f~e- PICa(X ' I)dl , 

The solutions of the subsidiary equation s are 

sa = Va cosh (x J(p/ Da)) + Va sinh (x J(p/ Da)) , 

Sb = Vb cosh (x . ./(p/ Db)) + Vb sinh (x J(p/ Db)) . 

(Sa) 

(SIJ) 

(6) 

(7) 

The integration constants Va> Vb , Va. Vb must be determined from the boundary 

conditions (3) . 
For the transform l"ab(P) of the sought quantity qab(t) we have, in accordance 

with Eq. (4), 

(8) 

which in view of the fact that Va = 0 (ef. Eq. (3b)) and using (6) may be written as 

(9) 

The integration constant Va which is needed in Eq. (9) is determined by a straight­
forward but tedious algebra ; the transform of the sought quantity thu s becomes 
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Up to this point the procedure has been exact. Since, however, we seek an approxi-
mate solution valid for small times, let us utilize the properties of the L.-c. trans- !~ 

formation and substitute in Eq. (10) for the hyperbolic functions their approximations 
valid for large values of the argument: 

sinh (x) ;::::; cosh (x) ~ eX!2 (for large x) . 

This gives an approximate resulting transform 

(11) 

which has its corresponding original in') 

where erfc is the error function complement, and we have introduced 

a + b 
lfiab = 2(D )1 /2 ' 

ab' t 
(12a) 

(I2b) 

s = (15 )-1 /2 2SaSb 

ab ab S ! / D S ! / D 
aV a+ bV b 

(I2c) 

The corresponding solution for a simple membrane with thickness 1 characterized 
by the diffusion coefficient D and the partition coefficient S may be written (ref. 9

, 

p. 310) in the form 

q(t) = 4SCo .J(Dt) I ierfc [(2m + 1) I] ' 
m =O 2 .J(Dt) 

(13) 

where the function ierfc is defined by the integral 

ierfc (z) = { "'erfc (x) dx . (14) 
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In an approximation for small times we restrict ourselves to the first term of the 

series in Eq. (13), and use the relation 

ierfc (z) = 1( - 1 { 2 e- z
! - : erfc (z) 

which is derived from Eq. (14) by integration by parts. This yields 

(I5) 

where we have introduced 

t{! = 1/2 ~(DI). (15a) 

A comparison between (I5) and (! 2) reveals that in this approximation the laminated 

membrane AB behaves as a simple membrane characterized by the diffusion coef­

ficient Dab and by the partition coefficient Sab which can be calculated from para­

meters of the two layers on the basis of Eqs (i 2 b) and (I 2c). 

Membrane ABC 

Here, the problem is described by the equations 

with the boundary conditions 

t=O 

t>O x = 0 Ca = 0 , 

x = a 
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(17) 

(18) 

(19a) 

(I9b) 

(I9c) 

(19d) 
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x = (I + b Db aCb = D ac c 
ax c iJx ' 

(tge) 

Sc . Cb = Sb' CC , (19f) 

x=a+b+c Cc = Sc· Co , (19g) 

in which the symbols represent an obvious extension of the preceding case. By em­
ploying a completely analogous procedure, we derive for the L.-c. transform of q.bc(t) 
(which again represents the amount of the permeant which has passed through the 
unit area of the laminated membrane at x = 0) the formula 

(20) 

where 

F = J ( Do) Sa . cosh ().aa) cosh (J.bb) + ) ( Db) Sb sinh (Aaa) sinh ()'bb) , (20a) 

G = J (Da) Sa · cosh (J'aa) sinh (Abb) + )(Db) Sb sinh ()'aa) cosh (Abb) (20b) 

and the meaning of ): s is analogous to that in Eq. (10). 

An approximate calculation analogous to that used before gives, after inverse 
transformation, 

(21) 

where (in analogy to the earlier case) 

- a+b+c 
"'abc = 2 1(-) ' -y Dabc t 

(21 a) 

(21 b) 

and, eventually, 

(21 c) 
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An Approximate Solution of Transient Diffusion 895 

Hence, also in this case we proved that in the initial stages of transient diffusion 

the laminated membrane ABC behaves as a simple barrier characterized by the 

diffusion coefficient Dabc and the partition coefficient S-:;: which may be calculated 
from the parameters of the individual layers by means of Eqs (21 b) and (21 c)_ 

RESULTS AND DISCUSSION 

Both approximate solutions, Eqs (12) and (21), are based on the relation (15) - Ac­

cordingly, the range of validity of approximation (15) was tested first: for a simple 
membrane the exact solution - Eq _ (I3) - was compared with the approximate 

formula (15)- The results are summarized in Table I and indicate that Eq_ (15) is 
an excellent approximation, not only throughout the initial stages of transient dif­

fusion, but also rather deep in the range of the stationary state; usually, (p = Dl j/2 ~ 
~ 0-45 is taken as the transition value (ref.4

, p_ 51)_ 

When assessing the quality of the derived approximate relations at various combina­

tions of parameters which characterize the constituent layers of a composite mem­

brane, one must be able to determine the true time dependence of transient dif­

fusion through laminated membranes of both types_ Since, however, the exact solu­

tion 7 for lamina AB is not very convenient and no exact solution is known to exist 

for lamina ABC, the true quantities q(t) have been calculated numerically, by a nu­

merical inversion of the exact L.-c. transforms (10) or (20) employing the Gaver me­
thod 1o

•
ll

_ The accuracy of this method is excellent as illustrated by Table J, where 

TABLE I 

Comparison of the exact course of diffusion through a simple membrane with the approximation 
according to Eq_ (15) and with results of numerical inversion of the Laplace-Carson transform 

Dt//2 q(t)/2 SCol D.q.ppr 
a 

D.Qinv 
b 

(Eq_ 13) % % 

0-101 0-004090 0·006 0-021 

0-221 0-0386024 -0-002 0-001 
0-293 0-0687869 -0-022 0-002 
0-413 0-124886 - 0-185 0-002 
0-557 0-195582 -0-713 0-001 
0-581 0-207494 -0-838 0-008 

a Per cent deviation of approximate Eq. (15) from the exact course_ b Per cent deviation of the 
value calculated by numerical inversion of the L.-C_ transform from the exact course_ 
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the last column contains deviations in per cent of values obtained by the numerical 
inversion of the L.- c. transform from the exact solution for the simple membrane. 

All numerical calculations in this work were carried out using a desk-top, program­
mable computer Wang 2200 B. 

The accuracy of the derived approximate solution for the binary laminat­
ed membrane was tested for a number of combinations of the input parameters 

(D", Db' Sa' Sb' a, b) shown in Table II. Since the main region of application of the 
approximate relation (I2) may be expected in the interval before the stationary 
state is reached (as already mentioned, the position of the straight line characterizing 
the stationary diffusion may be found by using known relations for the permeation 
coefficient of the laminated membrane - the slope of the straight line - and for 
the time-lag - its intercept with the time axis), in the interactive mode of calculation 
with the desk-top minicomputer the computation was interrupted as soon as the 
slope of q(t) obtained by numerical inversion of the L.- c. transform (10) stabilized 
to four digits. The corresponding time of onset of the steady state is denoted by Is; 

the diffusion in the transient state will be characterized by a dimensionless time 

, = tits (, < 1). 
The error involved in the derived approximate formula is illustrated in Fig. 1, 

in which the quantity b, representing the per cent deviation of q"b(l) determined from 
Eq. (i 2) for a given combination of input parameters from the correct value obtained 
by the numerical inversion of the exact transform (10), is plotted against ,. 

TABLE II 

Tested combinations of parameters of lamina AB with thickness a + b = 0·1 cm 

Code D a · 10
7 Db ·l07 

Sa Sb 
a Dab Sab cm2 S-1 cm2 S-1 cm cm2 S-1 

2Dl 0'5 0·05 0·686 
2D2 0 ·2 0·05 0·382 
2S1 0·5 0·05 0·667 
2S3 0·2 0·05 0·333 
2S2 0·1 0·05 0·182 

2S4 0·01 0·05 0·020 
2Al 0·5 0·03 0-601 1-069 
2A2 1 0-5 0'01 0-531 1-137 
2A3 0·5 1 0·03 0-791 0·931 
2A4 0·5 0·01 0·922 0·863 
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An Approximate Solution of Transient Diffusion 897 

The figure shows that the deviation never exceeds 15% being thus comparable 

with the error involved in the experimental determination of the diffusion coefficient. 

The largest deviations are typical of large differences in the thick nesses of both 

layers (2A2, 2A3, 2A4); on the contrary, t he error of the approximation is rather 

insens itive to differences in the partition coefficients (series 2S). In some cases the 

error (j passes through a flat extreme (2A I, 2A2, 2DI) which is rea l as has been 
demonstrated by calcu lations with r > 1. 

TABLE III 

Tested combinations of parameters of lamina ABC with thickness a +- Ii +- c = 0·09 cm 
-----~-- --.. --------------------------

D . 107 ,cm2 s - 1 

Code Sa Sb S c 

D" Db Dc 

3AI 0·5 
3A2 0·5 
3A3 0·5 a·] 
3BI 0·07 
3B2 0·07 
3B3 0·07 
3S1 0·5 0·1 0'5 
3S2 0-5 0·1 0-5 
3S3 0·5 a-I 2 0-5 
3S4 0-5 a- I 0-5 

3SS 0-5 a-I 0-5 2 
3S6 0-5 a-I 0-5 

FIG- 1 

Per cent deviation t5 of the approximate 
Eq_ (12) from the correct function obtained 
by numerical inversion of transform (10) 
for a laminated membrane AB_ The scale 
to the right belongs to broken curves; code 
designations of the membranes are explained 
in Table II 

cm 

0·03 
0·04 
0·01 
0·01 
0·03 
0·04 
0-03 
0-03 
0-03 
0-03 
0-03 
0-03 
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cm cm 

0·03 0·03 
0·01 0·04 
0·07 0·0 1 
0·01 0·07 
0·01 0·05 
0·01 0·04 
0-03 0-03 
0-03 0-03 
0-03 0-03 
0-03 0-03 
0-03 0-03 
0·03 0-03 

Da be · 107 

cm 2 s - 1 

0·772 
0·914 
0-4 10 
0'584 
0'584 
0'584 
0·289 
0-289 
0-289 
0·289 
0-289 
0-289 

Sabc 

1,]05 
1,0 ]5 

0·800 
0·866 
0·866 
0·866 
0-710 
J·OSS 
0-438 
1-246 
0'502 
1-028 

10 

-15 
10 
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A similar procedure was employed in verifying the validity of the approximate 
expression (21) for a three-layer membrane having an overall thickness a + b + c = 
= 0·09 cm. The parameters and code designations of tested membranes are sum­
marized in Table IlL In series 3A, the effect of thickness of the constituent layers 
was examined, while in series 3B the position of the central, thin and rather imper­
meable layer B sandwiched between two outer layers A was varied; finally , in series 3S 
the constituent layers had the same thickness while differing to a greater extent in their 
diffusion and partition coefficients. 

The error of approximation, again expressed as a per cent deviation b of the de­
pendence calculated by using Eg . (21) from the numerical inversion of the transform 
(20), is plotted against, for all tested combinations in Fig. 2. In series 3A, 3B (Fig. 2a) 
the error of approximation was always lower than 20% and in several cases lay below 
10%. This holds also for some instances of series 3S (Fig. 2b), but for some combina­
tions (3S1, 3S2, 3S5) the error was much higher and approached 40%. 

It can be concluded that the relations derived in this study may be employed to pre­
dict approximately, with an accuracy sufficient for engineering calculations, the 
transient diffusion through laminated membranes AB - Eg. (12) - and ABC -
Eq. (21) - using the knowledge of difrusion and partition coefficients of the consti­
tuent layers. 

393 

3A2 

FIG. 

~100 

~ _ _ _ 3_S_4_ ~ 
I 
~ 0 
! 

351 j 

<:oo:o:o- ,,--~-----fW-- l20 

~~c=-ffi::: ' 
-10 _L------L _ _ ~ t~o 

02 10 

Error of approximation (21) for a laminated membrane ABC. a Series of membranes 3A and 
3B; b series of membranes 3S (cf Table III). The scale to the right belongs to broken curves; 
code designations of membranes are explained in Table III 
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